The Singularity Is Near: When Humans Transcend Biology Page 3
Consider that Harry unleashes his magic by uttering the right incantation. Of course, discovering and applying these incantations are no simple matters. Harry and his colleagues need to get the sequence, procedures, and emphasis exactly correct. That process is precisely our experience with technology. Our incantations are the formulas and algorithms underlying our modern-day magic. With just the right sequence, we can get a computer to read a book out loud, understand human speech, anticipate (and prevent) a heart attack, or predict the movement of a stock-market holding. If an incantation is just slightly off mark, the magic is greatly weakened or does not work at all.
One might object to this metaphor by pointing out that Hogwartian incantations are brief and therefore do not contain much information compared to, say, the code for a modern software program. But the essential methods of modern technology generally share the same brevity. The principles of operation of software advances such as speech recognition can be written in just a few pages of formulas. Often a key advance is a matter of applying a small change to a single formula.
The same observation holds for the “inventions” of biological evolution: consider that the genetic difference between chimpanzees and humans, for example, is only a few hundred thousand bytes of information. Although chimps are capable of some intellectual feats, that tiny difference in our genes was sufficient for our species to create the magic of technology.
Muriel Rukeyser says that “the universe is made of stories, not of atoms.” In chapter 7, I describe myself as a “patternist,” someone who views patterns of information as the fundamental reality. For example, the particles composing my brain and body change within weeks, but there is a continuity to the patterns that these particles make. A story can be regarded as a meaningful pattern of information, so we can interpret Muriel Rukeyser’s aphorism from this perspective. This book, then, is the story of the destiny of the human-machine civilization, a destiny we have come to refer to as the Singularity.
CHAPTER ONE
* * *
The Six Epochs
Everyone takes the limits of his own vision for the limits of the world.
—ARTHUR SCHOPENHAUER
I am not sure when I first became aware of the Singularity. I’d have to say it was a progressive awakening. In the almost half century that I’ve immersed myself in computer and related technologies, I’ve sought to understand the meaning and purpose of the continual upheaval that I have witnessed at many levels. Gradually, I’ve become aware of a transforming event looming in the first half of the twenty-first century. Just as a black hole in space dramatically alters the patterns of matter and energy accelerating toward its event horizon, this impending Singularity in our future is increasingly transforming every institution and aspect of human life, from sexuality to spirituality.
What, then, is the Singularity? It’s a future period during which the pace of technological change will be so rapid, its impact so deep, that human life will be irreversibly transformed. Although neither utopian nor dystopian, this epoch will transform the concepts that we rely on to give meaning to our lives, from our business models to the cycle of human life, including death itself. Understanding the Singularity will alter our perspective on the significance of our past and the ramifications for our future. To truly understand it inherently changes one’s view of life in general and one’s own particular life. I regard someone who understands the Singularity and who has reflected on its implications for his or her own life as a “singularitarian.”1
I can understand why many observers do not readily embrace the obvious implications of what I have called the law of accelerating returns (the inherent acceleration of the rate of evolution, with technological evolution as a continuation of biological evolution). After all, it took me forty years to be able to see what was right in front of me, and I still cannot say that I am entirely comfortable with all of its consequences.
The key idea underlying the impending Singularity is that the pace of change of our human-created technology is accelerating and its powers are expanding at an exponential pace. Exponential growth is deceptive. It starts out almost imperceptibly and then explodes with unexpected fury—unexpected, that is, if one does not take care to follow its trajectory. (See the “Linear vs. Exponential Growth” graph on p. 10.)
Consider this parable: a lake owner wants to stay at home to tend to the lake’s fish and make certain that the lake itself will not become covered with lily pads, which are said to double their number every few days. Month after month, he patiently waits, yet only tiny patches of lily pads can be discerned, and they don’t seem to be expanding in any noticeable way. With the lily pads covering less than 1 percent of the lake, the owner figures that it’s safe to take a vacation and leaves with his family. When he returns a few weeks later, he’s shocked to discover that the entire lake has become covered with the pads, and his fish have perished. By doubling their number every few days, the last seven doublings were sufficient to extend the pads’ coverage to the entire lake. (Seven doublings extended their reach 128-fold.) This is the nature of exponential growth.
Consider Gary Kasparov, who scorned the pathetic state of computer chess in 1992. Yet the relentless doubling of computer power every year enabled a computer to defeat him only five years later.2 The list of ways computers can now exceed human capabilities is rapidly growing. Moreover, the once narrow applications of computer intelligence are gradually broadening in one type of activity after another. For example, computers are diagnosing electrocardiograms and medical images, flying and landing airplanes, controlling the tactical decisions of automated weapons, making credit and financial decisions, and being given responsibility for many other tasks that used to require human intelligence. The performance of these systems is increasingly based on integrating multiple types of artificial intelligence (AI). But as long as there is an AI shortcoming in any such area of endeavor, skeptics will point to that area as an inherent bastion of permanent human superiority over the capabilities of our own creations.
This book will argue, however, that within several decades information based technologies will encompass all human knowledge and proficiency, ultimately including the pattern-recognition powers, problem-solving skills, and emotional and moral intelligence of the human brain itself.
Although impressive in many respects, the brain suffers from severe limitations. We use its massive parallelism (one hundred trillion interneuronal connections operating simultaneously) to quickly recognize subtle patterns. But our thinking is extremely slow: the basic neural transactions are several million times slower than contemporary electronic circuits. That makes our physiological bandwidth for processing new information extremely limited compared to the exponential growth of the overall human knowledge base.
Our version 1.0 biological bodies are likewise frail and subject to a myriad of failure modes, not to mention the cumbersome maintenance rituals they require. While human intelligence is sometimes capable of soaring in its creativity and expressiveness, much human thought is derivative, petty, and circumscribed.
The Singularity will allow us to transcend these limitations of our biological bodies and brains. We will gain power over our fates. Our mortality will be in our own hands. We will be able to live as long as we want (a subtly different statement from saying we will live forever). We will fully understand human thinking and will vastly extend and expand its reach. By the end of this century, the nonbiological portion of our intelligence will be trillions of trillions of times more powerful than unaided human intelligence.
We are now in the early stages of this transition. The acceleration of paradigm shift (the rate at which we change fundamental technical approaches) as well as the exponential growth of the capacity of information technology are both beginning to reach the “knee of the curve,” which is the stage at which an exponential trend becomes noticeable. Shortly after this stage, the trend quickly becomes explosive. Before the middle of this century, the growth rates of our
technology—which will be indistinguishable from ourselves—will be so steep as to appear essentially vertical. From a strictly mathematical perspective, the growth rates will still be finite but so extreme that the changes they bring about will appear to rupture the fabric of human history. That, at least, will be the perspective of unenhanced biological humanity.
The Singularity will represent the culmination of the merger of our biological thinking and existence with our technology, resulting in a world that is still human but that transcends our biological roots. There will be no distinction, post-Singularity, between human and machine or between physical and virtual reality. If you wonder what will remain unequivocally human in such a world, it’s simply this quality: ours is the species that inherently seeks to extend its physical and mental reach beyond current limitations.
Many commentators on these changes focus on what they perceive as a loss of some vital aspect of our humanity that will result from this transition. This perspective stems, however, from a misunderstanding of what our technology will become. All the machines we have met to date lack the essential subtlety of human biological qualities. Although the Singularity has many faces, its most important implication is this: our technology will match and then vastly exceed the refinement and suppleness of what we regard as the best of human traits.
The Intuitive Linear View Versus
the Historical Exponential View
When the first transhuman intelligence is created and launches itself into recursive self-improvement, a fundamental discontinuity is likely to occur, the likes of which I can’t even begin to predict.
—MICHAEL ANISSIMOV
In the 1950s John von Neumann, the legendary information theorist, was quoted as saying that “the ever-accelerating progress of technology … gives the appearance of approaching some essential singularity in the history of the race beyond which human affairs, as we know them, could not continue.”3 Von Neumann makes two important observations here: acceleration and singularity. The first idea is that human progress is exponential (that is, it expands by repeatedly multiplying by a constant) rather than linear (that is, expanding by repeatedly adding a constant).
Linear versus exponential: Linear growth is steady; exponential growth becomes explosive.
The second is that exponential growth is seductive, starting out slowly and virtually unnoticeably, but beyond the knee of the curve it turns explosive and profoundly transformative. The future is widely misunderstood. Our forebears expected it to be pretty much like their present, which had been pretty much like their past. Exponential trends did exist one thousand years ago, but they were at that very early stage in which they were so flat and so slow that they looked like no trend at all. As a result, observers’ expectation of an unchanged future was fulfilled. Today, we anticipate continuous technological progress and the social repercussions that follow. But the future will be far more surprising than most people realize, because few observers have truly internalized the implications of the fact that the rate of change itself is accelerating.
Most long-range forecasts of what is technically feasible in future time periods dramatically underestimate the power of future developments because they are based on what I call the “intuitive linear” view of history rather than the “historical exponential” view. My models show that we are doubling the paradigm-shift rate every decade, as I will discuss in the next chapter. Thus the twentieth century was gradually speeding up to today’s rate of progress; its achievements, therefore, were equivalent to about twenty years of progress at the rate in 2000. We’ll make another twenty years of progress in just fourteen years (by 2014), and then do the same again in only seven years. To express this another way, we won’t experience one hundred years of technological advance in the twenty-first century; we will witness on the order of twenty thousand years of progress (again, when measured by today’s rate of progress), or about one thousand times greater than what was achieved in the twentieth century.4
Misperceptions about the shape of the future come up frequently and in a variety of contexts. As one example of many, in a recent debate in which I took part concerning the feasibility of molecular manufacturing, a Nobel Prize–winning panelist dismissed safety concerns regarding nanotechnology, proclaiming that “we’re not going to see self-replicating nanoengineered entities [devices constructed molecular fragment by fragment] for a hundred years.” I pointed out that one hundred years was a reasonable estimate and actually matched my own appraisal of the amount of technical progress required to achieve this particular milestone when measured at today’s rate of progress (five times the average rate of change we saw in the twentieth century). But because we’re doubling the rate of progress every decade, we’ll see the equivalent of a century of progress—at today’s rate—in only twenty-five calendar years.
Similarly at Time magazine’s Future of Life conference, held in 2003 to celebrate the fiftieth anniversary of the discovery of the structure of DNA, all of the invited speakers were asked what they thought the next fifty years would be like.5 Virtually every presenter looked at the progress of the last fifty years and used it as a model for the next fifty years. For example, James Watson, the codiscoverer of DNA, said that in fifty years we will have drugs that will allow us to eat as much as we want without gaining weight.
I replied, “Fifty years?” We have accomplished this already in mice by blocking the fat insulin receptor gene that controls the storage of fat in the fat cells. Drugs for human use (using RNA interference and other techniques we will discuss in chapter 5) are in development now and will be in FDA tests in several years. These will be available in five to ten years, not fifty. Other projections were equally shortsighted, reflecting contemporary research priorities rather than the profound changes that the next half century will bring. Of all the thinkers at this conference, it was primarily Bill Joy and I who took account of the exponential nature of the future, although Joy and I disagree on the import of these changes, as I will discuss in chapter 8.
People intuitively assume that the current rate of progress will continue for future periods. Even for those who have been around long enough to experience how the pace of change increases over time, unexamined intuition leaves one with the impression that change occurs at the same rate that we have experienced most recently. From the mathematician’s perspective, the reason for this is that an exponential curve looks like a straight line when examined for only a brief duration. As a result, even sophisticated commentators, when considering the future, typically extrapolate the current pace of change over the next ten years or one hundred years to determine their expectations. This is why I describe this way of looking at the future as the “intuitive linear” view.
But a serious assessment of the history of technology reveals that technological change is exponential. Exponential growth is a feature of any evolutionary process, of which technology is a primary example. You can examine the data in different ways, on different timescales, and for a wide variety of technologies, ranging from electronic to biological, as well as for their implications, ranging from the amount of human knowledge to the size of the economy. The acceleration of progress and growth applies to each of them. Indeed, we often find not just simple exponential growth, but “double” exponential growth, meaning that the rate of exponential growth (that is, the exponent) is itself growing exponentially (for example, see the discussion on the price-performance of computing in the next chapter).
Many scientists and engineers have what I call “scientist’s pessimism.” Often, they are so immersed in the difficulties and intricate details of a contemporary challenge that they fail to appreciate the ultimate long-term implications of their own work, and the larger field of work in which they operate. They likewise fail to account for the far more powerful tools they will have available with each new generation of technology.
Scientists are trained to be skeptical, to speak cautiously of current research goals, and to rarely speculate beyond the curre
nt generation of scientific pursuit. This may have been a satisfactory approach when a generation of science and technology lasted longer than a human generation, but it does not serve society’s interests now that a generation of scientific and technological progress comprises only a few years.
Consider the biochemists who, in 1990, were skeptical of the goal of transcribing the entire human genome in a mere fifteen years. These scientists had just spent an entire year transcribing a mere one ten-thousandth of the genome. So, even with reasonable anticipated advances, it seemed natural to them that it would take a century, if not longer, before the entire genome could be sequenced.
Or consider the skepticism expressed in the mid-1980s that the Internet would ever be a significant phenomenon, given that it then included only tens of thousands of nodes (also known as servers). In fact, the number of nodes was doubling every year, so that there were likely to be tens of millions of nodes ten years later. But this trend was not appreciated by those who struggled with state-of-the-art technology in 1985, which permitted adding only a few thousand nodes throughout the world in a single year.6
The converse conceptual error occurs when certain exponential phenomena are first recognized and are applied in an overly aggressive manner without modeling the appropriate pace of growth. While exponential growth gains speed over time, it is not instantaneous. The run-up in capital values (that is, stock market prices) during the “Internet bubble” and related telecommunications bubble (1997–2000) was greatly in excess of any reasonable expectation of even exponential growth. As I demonstrate in the next chapter, the actual adoption of the Internet and e-commerce did show smooth exponential growth through both boom and bust; the overzealous expectation of growth affected only capital (stock) valuations. We have seen comparable mistakes during earlier paradigm shifts—for example, during the early railroad era (1830s), when the equivalent of the Internet boom and bust led to a frenzy of railroad expansion.